Pharmacy Focus: Zynteglo[®] – New Gene Therapy for Beta Thalassemia

Beta Thalassemia Disease Overview^{1,2,3,4,5,6,7}

Beta Thalassemia is a genetic blood disorder resulting in a reduction in function of the hemoglobin, which is the blood component in charge of oxygen transport. The gene responsible for this disorder is hemoglobin subunit beta (HBB). This gene also is associated with other forms of anemias and sickle cell disease (for reference but uncovered in this document).

About 1,300 individuals in the United States are estimated to have beta thalassemia, which has different severities – thalassemia minor, thalassemia intermedia and thalassemia major (also known as Cooley's Anemia). The severity of the disorder depends on the number of affected genes a person has inherited and determines the level of treatment required (see table below).

Beta thalassemia is most common among people of Mediterranean, North African, Indian, Central Asian and Southeast Asian descent. There is an equal risk between males and females for inheriting the disease since it is an autosomal recessive disease. Forty-four states and all U.S. territories require newborn testing for beta thalassemia, which is completed with a heel stick and blood panel.

Symptoms of beta thalassemia can become evident anywhere from one month through 11 years of age. The hallmark presentation of this disorder is anemia, due to abnormal hemoglobin, which can be life-threatening in severe cases. As the individual ages, they may have slowed growth, pallor, jaundice, gallstones and liver inflammation/enlargement. Other severe symptoms include failure to thrive and bone abnormalities. If a patient with thalassemia major does not receive treatment, they usually do not survive past the first few years of life due to cardiac complications. For females of childbearing age with beta thalassemia, fertility can be impacted, and pregnancies can be high-risk with complications.

Beta Thalassemia Severities^{2,8,9}

Carrier/Minor	Intermediate/Intermedia	Major/Cooley's Anemia
 Asymptomatic Mild anemias No treatments required One affected gene 	 Mild/moderate anemias within early childhood to later in life Slowed growth Bone abnormalities Two affected genes 	 Life-threatening anemias within the first two years Transfusion-dependent Slowed growth Bone abnormalities Spleen/liver enlargement Two affected genes Rare: One dominant affected gene
ICD Code: D56.3	ICD Code: D56.1	ICD Codes: D56.1, D56.5

Continued...

Current Treatment Options^{5,10,11,12}

As of early 2022, there were very few therapies to correct disease progression. Rather, the standard of care has consisted of management strategies that are time-consuming with the potential for adverse consequences requiring additional treatment.

Thalassemia major patients can be described as transfusion-dependent. These individuals receive blood transfusions every three to four weeks indefinitely. Chronic blood transfusions can lead to life-threatening iron overload complications resulting in heart, liver and, possibly, hormonal problems. These are corrected with chelation drugs that remove excess iron from the blood. Some common iron-removing agents include Desferal® (Deferoxamine) and Exjade®/Jadenu® (Deferasirox). These are used as needed to prevent iron toxicity.

Current standard therapy requires lifelong blood transfusions and iron removal treatment for symptomatic individuals. Reblozyl[®] is another option for managing anemia related to beta thalassemia major where blood cell maturation is increased via injections every three weeks. It is expected to decrease the number of necessary blood transfusions. The only potential cure for beta thalassemia is a sibling-matched bone marrow transplant; however, transplant matches are extremely rare and infrequent due to genetic match incompatibilities.

Zynteglo® Overview 13,14,15,16,17,18

Zynteglo[®] is a new gene therapy for beta thalassemia produced by bluebird bio. Zynteglo[®] was FDA-approved on August 17, 2022, for use in pediatric and adult patients who are transfusion-dependent. The manufacturer set the price for the one-time treatment at \$2,800,000.

Patients receiving Zynteglo[®] can expect about 15 days of pretreatments consisting of myeloablative/chemotherapy and mobilization therapy to help the body prepare for the treatment. Then, the average hospitalization duration post-treatment is about 44 days. Some patients have found it necessary to continue the use of their mobilization therapies (G-CSF) after treatment indefinitely. Some also reported side effects including mucositis, fever, vomiting and pain.

Overall, the goal is for patients to become transfusion-independent due to a one-time Zynteglo[®] treatment. According to bluebird bio's Phase I/II combined studies, their initial participants who responded to Zynteglo[®] take two months to reach transfusion independence and experience 17 months of transfusion independence after the one-time treatment. Phase III data, as reported by ICER, used the higher, FDA-approved dose and found the median duration of transfusion independence to be 31.6 months.

Zynteglo® Treatment Timeline^{16,17}

Continued...

Treatment Options^{5,9,10,13,15,17,18,19,20}

	Chronic Blood Transfusion	Zynteglo®	Reblozyl®	Bone Marrow Transplant
Indication	Transfusion-dependent Thalassemia (ICD-10 Code: D56.1, D56.5)	Transfusion-dependent Thalassemia (ICD-10 Code: D56.1, D56.5)	Transfusion-dependent Thalassemia (ICD-10 Code: D56.1, D56.5)	Transfusion-dependent Thalassemia (ICD-10 Code: D56.1, D56.5)
HCPCS Codes (temporary)	P9010	J3490, J3590, C9399	J0896	S2150
Method	Provides viable red blood cells with oxygen-carrying capacity	Inserts functional HBB gene via lentiviral vector	Matures functional red blood cells	Provides functional HBB gene from donor
Annual Price*	Transfusions: \$22,478 PPY average Chelation: \$52,718 PPY average Average overall cost (2019): \$128,060	Pre-treatment: Busulfan, G-CSF, Plerixafor One-time treatment: \$2.8 million Post-treatment: 44-day hospitalization (average); possible chronic G-CSF use	<\$250,000 PPY	One-time transplant: \$150,000 median price; may still require chelation therapy
Dosing	Transfusions every 3-4 weeks; chelation therapy as needed according to iron levels	5.0 × 106 CD34+ cells/kg	1-1.75 mg/kg every three weeks	N/A
Adverse Events	Fever, allergic reactions, transfusion- transmitted infections, alloimmunization, iron overload	Mucositis, febrile neutropenia, vomiting, fever, alopecia, pain, cough, headache	Thrombosis, high blood pressure, blood cells accumulating in the spleen	Graft vs. Host disease, infections

*Blood transfusions are billed under medical coverage, while chelation therapy is billed under prescription coverage

Continued...

Key Takeaways Regarding Zynteglo®

- · Gene therapy approved August 17, 2022, for adult and pediatric transfusion-dependent beta thalassemia patients
- · Offers a one-time therapy to potentially establish transfusion independence
- Market price of \$2,800,000 for the one-time dose without including the average hospital stay of 44 days

Cost Containment Considerations

As part of its HMConnects[™] cost containment program, HM Insurance Group (HM) works to support cost management opportunities around the use of gene and cell therapies and other high-cost pharmaceutical treatment options that can impact our clients' bottom line. The Pharmacy Operations (RxOps) team watches the market – and our book of business – to anticipate how current and future advancements will impact financial risk levels for HM's client base. Standard practices include reviewing, auditing and collaborating on the content of current policies, monitoring trends and implementing appropriate cost savings techniques. Additional practices include prevention of stockpiling, ensuring prescriptions are filled via in network pharmacies and that they are properly dosed based on weight and lab values when appropriate. All of these services are provided to HM's clients at no additional cost to them.

Pharmacy Focus provides valuable information about pharmaceutical industry developments and their associated costs that can impact the growing claims trend in the self-funded insurance market. Be aware of influences and gain insight into approaches that may help to contain costs. Please share topic suggestions or feedback with **HMPharmacyServices@hmig.com**.

HM Insurance Group

Products are underwritten by HM Life Insurance Company, Pittsburgh, PA, Highmark Casualty Insurance Company, Pittsburgh, PA, or HM Life Insurance Company of New York, New York, NY.

800.328.5433 | hmig.com

This is an informational document only and is not intended to provide legal advice, tax advice or advice on your health plan's content and design. This document is not meant to address federal or other applicable laws for health plans. This document only includes HM's suggested best practices for certain provisions in a health plan. You should consult with your legal counsel and/or a qualified plan design professional.

Resources: Beta-thalassemia | Genetic and Rare Diseases Information Center (GARD) – an NCATS Program, Nih.gov., published 2018, https://readiseases.info.nih.gov/diseases/871/beta-thalassemia, accessed August 5, 2022; 'Beta Thalassemia: MedlinePlus gov, published August 18, 2020, https://medlineplus.gov/genetics/condition/beta-thalassemia/#frequency, accessed August 5, 2022; 'Meborn Screening, in Your State | Newborn Screening, newbornscreening.hrsa.gov, published August 18, 2020, https://mebornscreening.hrsa.gov/goue-state, accessed August 10, 2022; 'Cappellini M. Editorial. Alsic. 2019, 4 (Vol. 22, n° 2):23, 212-214, oli:10.4000/alsic.4159; 'Beta Thalassemia, NGN (National Organization for Rare Disorders), rarediseases.org, accessed August 20, 22; 'TCD-10-CM Code D56.3 – Beta thalassemia/attestrict, accessed August 8, 2022; 'TCD-10-CM Code D56.1 - Beta thalassemia. (CD Codes, published 2022, https://icd.codes/icd10cm/D561, accessed August 5, 2022; 'TCD-10-CM Code D56.1 - Beta thalassemia, ICD Codes, published 3022, https://icd.codes/icd10cm/D561, accessed August 5, 2022; 'TD-10-CM Code D56.1 - Beta thalassemia/attestrict, accessed August 15, 2022; 'TD-10-CM Code D56.1 - Beta thalassemia/tabsemia/ta